metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

cis-Bis(2,2'-bipyridyl)dichloridoruthenium(II) dichloromethane solvate

Mousa Al-Noaimi^a and Salim F. Haddad^{b*}

^aChemistry Department, Faculty of Science, Hashemite University, Zarka, Jordan, and ^bDepartment of Chemistry, University of Jordan, Amman 11942, Jordan Correspondence e-mail: hadsal2003@yahoo.com

Received 30 July 2007; accepted 1 August 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.027; wR factor = 0.064; data-to-parameter ratio = 19.4.

In the crystal structure of the title compound, [RuCl₂-(C₁₀H₈N₂)₂]·CH₂Cl₂, the complex consists of two bidentate 2,2'-bipyridyl N-atom donors and two chloride ions coordinated to an Ru^{II} centre which lies on a crystallographic twofold rotation axis. Equivalent ligands are cis, each related by the twofold rotation. One dichloromethane solvent molecule per Ru complex is trapped in the crystal structure.

Related literature

For related literature, see: Eggleston et al. (1985); Lackner et al. (2004); Nag et al. (2006).

Experimental

Crystal data

[RuCl₂(C₁₀H₈N₂)₂]·CH₂Cl₂ $M_r = 569.26$ Orthorhombic, Aba2 a = 12.5658 (9) Å b = 15.4595 (11) Å c = 11.8864 (9) Å

Data collection

Bruker/Siemens SMART APEX diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{\min} = 0.761, \ T_{\max} = 0.966$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.028$
$wR(F^2) = 0.064$
S = 1.04
2654 reflections
137 parameters
1 restraint

V = 2309.1 (3) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 1.16 \text{ mm}^{-1}$ T = 298 (2) K $0.25 \times 0.22 \times 0.03 \text{ mm}$

16972 measured reflections 2654 independent reflections 2310 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.042$

H-atom parameters constrained $\Delta \rho_{\rm max} = 0.49 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 1260 Freidel pairs Flack parameter: -0.01(5)

Data collection: SMART (Bruker, 2006); cell refinement: SAINT-Plus (Bruker, 2006); data reduction: SAINT-Plus; program(s) used to solve structure: XS in SHELXTL (Bruker, 2003); program(s) used to refine structure: XL in SHELXTL; molecular graphics: XP in SHELXTL; software used to prepare material for publication: XCIF in SHELXTL.

This work was supported in part by the Deanship of Academic Research, University of Jordan. Thanks are also due to Brendan Twamley, University Research Office, University of Idaho, Moscow, ID.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2362).

References

- Bruker (2003). SHELXTL. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). SADABS. Version 2004/1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2006). SMART (Version 5.632) and SAINT-Plus (Version 7.23a). Bruker AXS Inc., Madison, Wisconsin, USA.
- Eggleston, D. S., Goldsby, K. A., Hodgson, D. J. & Meyer, T. J. (1985). Inorg. Chem. 24, 4573-4580.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Lackner, W., Schmid, R., Kirchner, K. & Merieter, K. (2004). Private communication (deposition number CCDC 231460). CCDC, Union Road, Cambridge, England.
- Nag, S., Drew, M. G. B. & Datta, D. (2006). Inorg. Chem. Commun. 9, 310-312.

supplementary materials

Acta Cryst. (2007). E63, m2332 [doi:10.1107/S1600536807037865]

cis-Bis(2,2'-bipyridyl)dichloridoruthenium(II) dichloromethane solvate

M. Al-Noaimi and S. F. Haddad

Comment

The structure of the title compound, (I), is shown in Fig. 1. A ll bond lengths and angles are normal. The complex has been reported earlier in lower symmetry space groups as the hydrate in C2/c (Eggleston *et al.*, 1985), as an acetone solvate in P21/n (Lackner *et al.*, 2004), and as an I₂ adduct in C2/c (Nag *et al.*, 2006).

The structure of (I) displays distorted octahedral coordination to the metal cation, without any significant hydrogen bonding. The solvent molecule is free in the lattice and displays larger thermal displacements than seen in the Ru complex.

The 2,2'-bipyridyl ligand is planar. The five membered chelate ring is folded about the N1…N12 line with a dihedral angle between the plane of the ligand, and the N1/Ru1/N12 plane of 5.0 (2)°. The dihedral angle between the least square planes of the two fold rotation related 2,2'-bipyridyl ligands is 87.78°. The Cl1—Ru1—Cl1ⁱ [symmetry code: (i) -x, -y + 2, z] angle is 93.31 (5)°.

Experimental

1.0 mmole ruthenium trichloride and 2.0 mmol 2,2'-dipyridyl were refluxed in absolute ethanol for 4 h followed with the addition of 11.8 mmol LiCl and further reflux for additional 1 h. The solvent was then removed by rotary evaporator and the crude product dissolved in dichloromethane, filtered and washed by water and reduced to 20 ml. Chromatography on alumina with 10:1 dichloromethane: methanol as eluent yielded 0.2 g of the neutral complex from the second dark-pink band. Suitable crystals of (I) were obtained upon recrystallization from dichloromethane and slow evaporation of solvent.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H distances fixed at 0.93 Å (aromatic) and 0.97 Å (methylene) and with U_{iso} constrained to be $1.2U_{eq}$ of the carrier atom.

Figures

Fig. 1. The molecular structure of the title compound (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

cis-Bis(2,2'-bipyridyl)dichloridoruthenium(II) dichloromethane solvate

 $F_{000} = 1136$

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.6-29.6^{\circ}$ $\mu = 1.16 \text{ mm}^{-1}$

T = 298 (2) K

 $0.25 \times 0.22 \times 0.03 \text{ mm}$

Plate, red

 $D_{\rm x} = 1.638 \text{ Mg m}^{-3}$ Mo *K* α radiation

Cell parameters from 7381 reflections

Crystal data

 $[RuCl_{2}(C_{10}H_{8}N_{2})_{2}] \cdot CH_{2}Cl_{2}$ $M_{r} = 569.26$ Orthorhombic, *Aba*2 Hall symbol: A 2 -2ac a = 12.5658 (9) Å b = 15.4595 (11) Å c = 11.8864 (9) Å V = 2309.1 (3) Å³ Z = 4

Data collection

Bruker/Siemens SMART APEX diffractometer	2654 independent reflections
Monochromator: graphite	2310 reflections with $I > 2\sigma(I)$
Detector resolution: 8.3 pixels mm ⁻¹	$R_{\rm int} = 0.042$
T = 298(2) K	$\theta_{\text{max}} = 27.5^{\circ}$
ω scans	$\theta_{\min} = 2.6^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2004)	$h = -16 \rightarrow 16$
$T_{\min} = 0.761, \ T_{\max} = 0.966$	$k = -20 \rightarrow 20$
16972 measured reflections	$l = -15 \rightarrow 15$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.028$	$w = 1/[\sigma^2(F_o^2) + (0.0344P)^2 + 0.0898P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.064$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.04	$\Delta \rho_{max} = 0.49 \text{ e} \text{ Å}^{-3}$
2654 reflections	$\Delta \rho_{min} = -0.28 \text{ e } \text{\AA}^{-3}$
137 parameters	Extinction correction: none
1 restraint	Absolute structure: Flack (1983), 1260 Freidel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: -0.01 (5)
Secondary atom site location: difference Fourier map	

sup-2

Special details

C2

C3

0.0427 (18)

0.0386 (18)

0.0461 (19)

0.065(2)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

 $U_{iso}*/U_{eq}$ Occ. (<1) \boldsymbol{Z} х y C2 0.2168 (3) 0.9265 (2) 0.0486 (8) 0.3118 (3) H2 0.2240 0.9752 0.3572 0.058* C3 0.2952 (3) 0.3151 (4) 0.0588 (10) 0.8648 (3) H3 0.3537 0.8715 0.3622 0.071* C4 0.7930(2) 0.2863(2)0.2481 (4) 0.0594 (9) H4 0.3387 0.7505 0.2485 0.071* C5 0.1983 (3) 0.7851 (2) 0.1802 (3) 0.0507 (9) Н5 0.1906 0.7368 0.1343 0.061* C6 0.1803 (3) 0.1209(2)0.84917 (18) 0.0361(7)C7 0.0243(3)0.84691 (19) 0.1115 (3) 0.0369(7) C8 0.0016 (3) 0.7830(2) 0.0331 (3) 0.0488 (9) H8 0.0487 0.7373 0.0225 0.059* C9 -0.0896(3)0.7873(2)-0.0284(3)0.0569 (9) Н9 -0.10480.7451 -0.08180.068* C10 -0.0110(3)-0.1594(3)0.8549(2) 0.0505 (9) H10 -0.22240.8587 -0.05190.061* C11 -0.1340(3)0.9165 (2) 0.0681 (3) 0.0424 (7) H11 -0.18100.9621 0.0798 0.051* C13 0.5000 1.0000 0.1365 (7) 0.127 (5) H13A 0.5485 1.0318 0.0883 0.152* 0.50 H13B 0.4515 0.9682 0.0883 0.152* 0.50 C11 0.07119 (7) 1.09792 (5) 0.38787 (7) 0.0464 (2) Cl2 0.57183 (12) 0.92754 (9) 0.21546 (12) 0.1012 (5) N1 0.13028 (16) 0.91993 (13) 0.2463(3)0.0345 (5) N12 -0.0450(2)0.91362 (16) 0.1286 (2) 0.0334 (6) Ru1 0.0000 1.0000 0.24825 (6) 0.02831 (8) Atomic displacement parameters $(Å^2)$ U^{11} U^{22} U^{12} U^{33} U^{13} U^{23}

0.057(2)

0.072 (3)

0.0029 (15)

0.0103 (17)

-0.0107(17)

-0.0118(18)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

-0.0032(16)

0.010(2)

supplementary materials

C4	0.0447 (17)	0.0552 (19)	0.078 (2)	0.0240 (15)	0.004 (3)	0.008 (3)
C5	0.050 (2)	0.0377 (17)	0.064 (2)	0.0135 (15)	0.0081 (18)	-0.0020 (16)
C6	0.0382 (16)	0.0276 (14)	0.0424 (17)	0.0005 (12)	0.0058 (13)	0.0014 (13)
C7	0.0469 (18)	0.0267 (15)	0.0372 (16)	0.0018 (12)	0.0049 (13)	-0.0023 (13)
C8	0.061 (2)	0.0390 (19)	0.0468 (19)	0.0030 (16)	0.0043 (17)	-0.0140 (16)
C9	0.069 (2)	0.054 (2)	0.048 (2)	-0.0087 (18)	-0.0080 (19)	-0.0144 (17)
C10	0.052 (2)	0.056 (2)	0.0440 (19)	-0.0116 (17)	-0.0157 (17)	0.0007 (17)
C11	0.0425 (17)	0.0387 (17)	0.0460 (18)	0.0010 (14)	-0.0048 (14)	0.0035 (14)
C13	0.190 (11)	0.130 (8)	0.061 (5)	0.101 (7)	0.000	0.000
Cl1	0.0544 (5)	0.0369 (4)	0.0479 (4)	-0.0043 (4)	-0.0010 (4)	-0.0102 (4)
Cl2	0.1190 (12)	0.0895 (8)	0.0952 (11)	0.0280 (8)	-0.0265 (8)	0.0055 (8)
N1	0.0339 (11)	0.0295 (10)	0.0403 (12)	0.0028 (8)	-0.0011 (15)	0.0003 (14)
N12	0.0352 (13)	0.0269 (14)	0.0380 (14)	0.0006 (11)	0.0017 (12)	0.0019 (11)
Ru1	0.03049 (13)	0.02159 (12)	0.03284 (14)	0.00206 (12)	0.000	0.000

Geometric parameters (Å, °)

C2—N1	1.342 (4)	С9—Н9	0.9300
C2—C3	1.372 (5)	C10-C11	1.376 (5)
С2—Н2	0.9300	C10—H10	0.9300
C3—C4	1.370 (6)	C11—N12	1.330 (4)
С3—Н3	0.9300	C11—H11	0.9300
C4—C5	1.374 (5)	C13—Cl2 ⁱ	1.718 (5)
C4—H4	0.9300	C13—Cl2	1.718 (5)
C5—C6	1.388 (4)	C13—H13A	0.9700
С5—Н5	0.9300	C13—H13B	0.9700
C6—N1	1.351 (4)	Cl1—Ru1	2.4179 (9)
C6—C7	1.464 (4)	N1—Ru1	2.052 (2)
C7—N12	1.365 (4)	N12—Ru1	2.031 (3)
C7—C8	1.388 (5)	Ru1—N12 ⁱⁱ	2.031 (3)
C8—C9	1.362 (5)	Ru1—N1 ⁱⁱ	2.052 (2)
C8—H8	0.9300	Ru1—Cl1 ⁱⁱ	2.4179 (9)
C9—C10	1.379 (5)		
N1—C2—C3	123.0 (3)	C10-C11-H11	118.6
N1—C2—H2	118.5	Cl2 ⁱ —C13—Cl2	113.7 (5)
C3—C2—H2	118.5	Cl2 ⁱ —C13—H13A	108.8
C4—C3—C2	119.3 (3)	Cl2—C13—H13A	108.8
С4—С3—Н3	120.4	Cl2 ⁱ —C13—H13B	108.8
С2—С3—Н3	120.4	Cl2—C13—H13B	108.8
C3—C4—C5	118.6 (3)	H13A—C13—H13B	107.7
C3—C4—H4	120.7	C2—N1—C6	117.9 (3)
C5—C4—H4	120.7	C2—N1—Ru1	126.4 (2)
C4—C5—C6	120.0 (3)	C6—N1—Ru1	115.21 (19)
С4—С5—Н5	120.0	C11—N12—C7	118.8 (3)
С6—С5—Н5	120.0	C11—N12—Ru1	126.2 (2)
N1—C6—C5	121.2 (3)	C7—N12—Ru1	115.0 (2)
N1—C6—C7	114.5 (2)	N12—Ru1—N12 ⁱⁱ	91.08 (15)

C5—C6—C7	124.3 (3)	N12—Ru1—N1	79.47 (11)
N12—C7—C8	120.4 (3)	N12 ⁱⁱ —Ru1—N1	99.59 (11)
N12—C7—C6	115.3 (3)	N12—Ru1—N1 ⁱⁱ	99.59 (11)
C8—C7—C6	124.2 (3)	N12 ⁱⁱ —Ru1—N1 ⁱⁱ	79.47 (11)
C9—C8—C7	119.9 (3)	N1—Ru1—N1 ⁱⁱ	178.68 (19)
С9—С8—Н8	120.0	N12—Ru1—Cl1	174.38 (8)
С7—С8—Н8	120.0	N12 ⁱⁱ —Ru1—Cl1	88.07 (7)
C8—C9—C10	119.5 (3)	N1—Ru1—Cl1	95.19 (8)
С8—С9—Н9	120.3	N1 ⁱⁱ —Ru1—Cl1	85.72 (8)
С10—С9—Н9	120.3	N12—Ru1—Cl1 ⁱⁱ	88.07 (7)
C11—C10—C9	118.6 (3)	N12 ⁱⁱ —Ru1—Cl1 ⁱⁱ	174.38 (8)
C11—C10—H10	120.7	N1—Ru1—Cl1 ⁱⁱ	85.72 (8)
С9—С10—Н10	120.7	N1 ⁱⁱ —Ru1—Cl1 ⁱⁱ	95.19 (8)
N12-C11-C10	122.8 (3)	Cl1—Ru1—Cl1 ⁱⁱ	93.31 (5)
N12—C11—H11	118.6		
~	-		

Symmetry codes: (i) -x+1, -y+2, *z*; (ii) -x, -y+2, *z*.

Fig. 1

